The hemicellulolytic enzyme arsenal of Thermobacillus xylanilyticus depends on the composition of biomass used for growth

نویسندگان

  • Harivony Rakotoarivonina
  • Béatrice Hermant
  • Nina Monthe
  • Caroline Rémond
چکیده

BACKGROUND Thermobacillus xylanilyticus is a thermophilic and highly xylanolytic bacterium. It produces robust and stable enzymes, including glycoside hydrolases and esterases, which are of special interest for the development of integrated biorefineries. To investigate the strategies used by T. xylanilyticus to fractionate plant cell walls, two agricultural by-products, wheat bran and straw (which differ in their chemical composition and tissue organization), were used in this study and compared with glucose and xylans. The ability of T. xylanilyticus to grow on these substrates was studied. When the bacteria used lignocellulosic biomass, the production of enzymes was evaluated and correlated with the initial composition of the biomass, as well as with the evolution of any residues during growth. RESULTS Our results showed that T. xylanilyticus is not only able to use glucose and xylans as primary carbon sources but can also use wheat bran and straw. The chemical compositions of both lignocellulosic substrates were modified by T. xylanilyticus after growth. The bacteria were able to consume 49% and 20% of the total carbohydrates in bran and straw, respectively, after 24 h of growth. The phenolic and acetyl ester contents of these substrates were also altered. Bacterial growth on both lignocellulosic biomasses induced hemicellulolytic enzyme production, and xylanase was the primary enzyme secreted. Debranching activities were differentially produced, as esterase activities were more important to bacterial cultures grown on wheat straw; arabinofuranosidase production was significantly higher in bacterial cultures grown on wheat bran. CONCLUSION This study provides insight into the ability of T. xylanilyticus to grow on abundant agricultural by-products, which are inexpensive carbon sources for enzyme production. The composition of the biomass upon which the bacteria grew influenced their growth, and differences in the biomass provided resulted in dissimilar enzyme production profiles. These results indicate the importance of using different biomass sources to encourage the production of specific enzymes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Genetic and biochemical characterization of a highly thermostable alpha-L-arabinofuranosidase from Thermobacillus xylanilyticus.

The gene encoding an alpha-L-arabinofuranosidase from Thermobacillus xylanilyticus D3, AbfD3, was isolated. Characterization of the purified recombinant alpha-L-arabinofuranosidase produced in Escherichia coli revealed that it is highly stable with respect to both temperature (up to 90 degrees C) and pH (stable in the pH range 4 to 12). On the basis of amino acid sequence similarities, this 56,...

متن کامل

New insights into the role of the thumb-like loop in GH-11 xylanases.

GH-11 xylanases are highly specific and possess a thumb-shaped loop, a unique structure among enzymes with a jelly-roll scaffold. To investigate this structure, in vitro mutagenesis was performed on a GH-11 xylanase (Tx-Xyl) from Thermobacillus xylanilyticus. Targets were the conserved amino acids Pro(114)-Ser(115)-Ile(116) that are located at the thumb's tip and Thr(121) and Tyr(111), linker r...

متن کامل

Thumb-loops up for catalysis: a structure/function investigation of a functional loop movement in a GH11 xylanase

Dynamics is a key feature of enzyme catalysis. Unfortunately, current experimental and computational techniques do not yet provide a comprehensive understanding and description of functional macromolecular motions. In this work, we have extended a novel computational technique, which combines molecular modeling methods and robotics algorithms, to investigate functional motions of protein loops....

متن کامل

Engineering better biomass-degrading ability into a GH11 xylanase using a directed evolution strategy

BACKGROUND Improving the hydrolytic performance of hemicellulases on lignocellulosic biomass is of considerable importance for second-generation biorefining. To address this problem, and also to gain greater understanding of structure-function relationships, especially related to xylanase action on complex biomass, we have implemented a combinatorial strategy to engineer the GH11 xylanase from ...

متن کامل

EFFECTS OF DIFFERENT TEMPERATURE AND FEEDING RATE ON GROWTH PERFORMANCE, BODY COMPOSITION AND BLOOD PARAMETERS OF ASIAN SEA BASS (LATES CALCARIFER)

This study aimed to investigate the effects of different temperatures (20, 27 and 33 °C) and two feeding rates (2.5 % biomass per day and satiation) on growth performance, body composition, hematology and blood biochemistry of Asian sea bass (Lates calcarifer). For this purpose, 8 fish with an average initial weight of 99.55 ± 0.24 g were randomly transported to 200 liters tanks (6 treatments w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2012